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Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes

P. Comtois and A. Vinet
Institute of Biomedical Engineering, Universitie Montral and Research Centre, faidal du SacreCoeur,
5400 Gouin West Blvd, Montagé Quebec, Canada H4J 1C5
(Received 16 December 1998

Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhytnglas
Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau,
and a late repolarization phase. The plateau phase determines the action potential (hiP@jasturing which
the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies
much with prematurity and this change has been shown to be the main determinant of the dynamics in models
of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be
an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of
this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in
cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and
prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the
ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical
model describing the propagation of period-1 solutions around an anf8iL@63-651X99)07310-9

PACS numbd(s): 87.19.Hh, 05.45-a

I. INTRODUCTION Curvature has been shown to be a determinant of propa-
gation both in the experimental and the theoretical model of

Reentry is a major mechanism underlying the initiationcardiac extended tissu&é8—21. Zykov has developed a ki-
and perpetuation of many cardiac arrhythmias. Transient oiematical model with a linear dependence between velocity
sustained propagation has been shown to occur around @hd curvaturg22] that is not accurate in the presence of
anatomical obstacle, or around a region of partially or totallydispersion. The kinematical model was exten(i28,24 to
unexcitable tissugl—3]. Sustained activation fronts with the include the effect of rate-dependent change of velocity, and
form of vortices have been observed in healthy substraturitability analysis has shown that perturbations of curvature
[4,5]. A large amount of modeling work has also been de-near the core may destabilize the solutid@b,26. Other
voted to reentry, with approaches ranging from cellular auSimple representations were proposed using singular pertur-
tomata to systems of partial differential equations involvingbation methods on Fitzhugh-Nagumo-tygHN) models
high-dimensional ionic model6—9]. This paper is focused [27-30, and an eikonal relationship was developed using a
on reentry in an homogeneous two-dimensional annulus (ﬁnite renormalization methoﬂ31,32] The APD restitution
ventricular excitable tissue with a central hole. was not considered in these works.

Stimulated ventricular myocytes produce action potential The objective of this paper is to combine both curvature
characterized by a fast upstroke, a long-lasting plateau, and@d prematurity effects in a kinematical model of propaga-
late repolarization phase. The plateau phase determines tHgn in cardiac tissue. First, an approximation of the ionic
action potential duratiobAPD) during which the system re- model is used to obtain the effects of curvature and prema-
mains refractory, a property essential to the synchronizatiofHrity on the speed of propagation, the APD, and the absolute
of the heart cycle. The APD varies extensively with prema_refractory period. Functions are obtained to describe these
turity and this Change has been shown to be the main deteﬂ.uantities. Two versions of the ionic model are studied that
minant of the entrainment response in a model of paced celdiffer in their rate of excitability recovery. The functions are
and paced cable, and of the regimes of reentry in a onedSeéd in a kinematical model describing the propagation of
dimensional looj10—17. In ionic models, the plateau phase Period-1 spluuons around an annulus that is solved numeri-
requires the inclusion of at least one additional inward cur<ally. The influence of prematurity and curvature on the form
rent acting on an intermediate time scale between the fagnd stability of the solutions is discussed.
activating current of the upstroke and the slow current of
repolarization that makes the difference between nerve cell Il. METHODS
and cardiac cell models. We used a modified Beeler-Reuter
(MBR) model of the cardiac myocyte, which is the simplest
ionic model meeting this requirement. We also used this The well-known cable equation in a two-dimensional
model because its dynamics have been thoroughly studied D) homogeneous isotropic excitable cardiac medium em-
the space-clamped, cable, and loop configurations. In thedgedded in an unbounded external medium of negligible re-
settings, the main features of the dynamics of the MBRsistivity is
model have been reproduced by simple nonlinear low-
dimensional model§14,16,17. Our purpose is to extend Ev’.ﬁvzs(c ﬂﬂ-
these simple models to the annulus. p Mgt *ion

A. Model

; (2.1
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s Sincen coincides with the direction ofV, the gradient

I along 7 is null, so that??V(z,w,t)/aw?=0. The termdp/ds
is equal to the curvatur&(s) of the equipotential. For a
L circular front propagating from the middle of a circular me-
dium, the correspondence &= 1/r andz=r. If K is taken
L as constant, Eq2.2) becomes a one-dimensional system that
. represents the propagation of a waveform with a constant
>~ T arbitrary curvature. This approximation was used to study
the effect of curvature on the speed of propagation and on
the repolarization. The sign of curvatukeis positive for a
convex front due to the vector convention used in the devel-
opment.
Equation (2.2) was simulated for a finite mediura
- 9 =[0,L] with no flux boundary conditionsL was set to
10 cm(2000 nodek The system was first discretized in time
: : : : : : ' ' ' with a constant time stepAt=0.002 ms) andl;,, was
x solved with an hybrid method described[B%,35. For each
FIG. 1. Schematic representation of a wave propagating with M€ Step, the system becomes a second-order ordinary dif-

local curvatureK. U is the speed in the direction of propagation of f_er_entlal equation, which was apprOX|ma_1ted with a Galerl_<ln
finite element method projected on a linear basis function

the front, 6 the speed of propagation perpendicular to the isoline . .

(parallel to the unit vectoﬁ), B the angle between the real spe]ed (hat function a.nd a. rggular spatlal mesmz:o.005_ cm)

andén, 7 the unit vector parallel to the isoline, asthe curvilinear [36]. The resultlng trlt'jl'agonal linear SySte.m of equations was

coordinate of the isoline ’ solv_ed with a S|mpI.|f|ed LU decomposition method. The
' choice of At and Az is motivated by the fact that depolar-

ization is the stiffest part of the process. Programs were writ-

ten in C and run on an SGI workstati¢8ilicon Graphics

-
<l

Ax
Ay

Sy

whereV is the transmembrane potentiah{/), C,, is the
membrane capacitance &F cm 2), S the surface-to-
volume ratio (0.4um™?, assuming cylindrical cells with a
radius of 5um), andp is the mean intracellular resistivity
(2002 cm). The membrane ionic model used to calculate Simulations were performed for different values of the
lion is @ modification of the Beeler-Reuter model of the ven-parameteK with normal and slowr; . Starting with the sys-
tricular myocyte cell membrane3]. tem at its resting state and a given valuekgfpropagation
The gating variabley; of the MBR model are governed was initiated by applying fots;=1 ms a stimulation of
by a first-order process described by a steady-state value 100 wA/cm? on 40 nodes starting &t=0. During propa-
¥i=-(V) and a time constant, (V). The total ionic currentis  gation, the beginning of the action potenti@P) at each

the sum of a fast sodium currehy,, a secondary inward Node ¢qep) Was taken as the instant at whidv/dz reaches
currentlg; assumed to be carried mainly by calcium ions, alts maximum. The end of the action potentigl.t) was de-
delayed outward potassium curredt, and a time- fined as the time at whic crosses—50 mV during repo-
independent potassium curreint,. Here,INa=§Nam3hj(V larization. The speed of propagatiah (K) was calculated

£ hereg..— 15 2 th , q from the difference oftye, between points spaced by ten
—Ena), W eregna=15ms cm* is the maximum conduc- —,qes to reduce discretization error. The APD at each node
tance;En,=40 mV is the sodium equilibrium potential; and

i ) ) was calculated as the difference betwegg, and tyep.
m, h, and j are the gating variablesls=g5df(V  Propagation was also initiated by applying premature stimu-
—Egi([Cal)), where g5=0.09 ms cm? is the maximum |ations at various times after the onset of the first AP. The
conductancef;([Ca]) is a calcium-dependent reversal po- diastolic interval(DI) was then defined at each node as the
tential, andd andf are the gating variables; in this model, time from the end of the test AP to the beginning of the next
lk=1lk1+ X1l is governed by a gating activation variable AP. Expressions were developed to represent the variation of
x1 and a fixed equilibrium potenti#y =—94 mV, andlx; ¢ and APD as functions dk and DI. Results of simulation
is an empirical function. To study the effect of slo&a]  were fitted using a least-squares minimization procedure of
channel recovery, simulations where done with the nominapMatlab (Mathworks Inc., MA.
7; (normal model and with 7; increased by a factor of 6
(slow mode]. B Ill. RESULTS

Figure 1 shows an isopotentilin Cartesian coordinates
at timest andt+ At. In the new coordinates defined by the
unit vectorsn and 7 in the direction normal and tangent to  TO evaluate the effects of curvature on velocity and APD
the equipotential and the associated coordinasdw, Eq.  from rest, measurements were averaged over a set of 50
(2.1) becomeg22] nodes in the middle of the mediae., 5 cm from the simu-
lation site. This was done to overcome the effects of bound-
aries. Simulations have shown an increase of velocity for a

+ + —Cy—+lion. (2.2 distance less than 0.07 cm near both ends of the media for all
pS\ 972 95 Iz gw? gt on K values.

B. Simulations

A. Velocity and A from rest

1[0V BN V| N
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(@) (b) These results were also compared with those of(E®)

with the modifications corresponding to the propagation of a
circular target wavefrontdashed curve in Fig.(3)]. Stimu-
lation was applied on the first ten nodes of the medium (
=0.05 cmK=20 cm %). In this case, the curvature changes
continuously as propagation proceeds. Nevertheless, results
of both models stay close %= 15 cm ®. Near the center,

the transient associated with the stimulation, the accumula-
tion of current due to the symmetry condition, as well as the
steep change of curvature mask the relation between speed
and curvature. We have also constructed a curve of the
threshold current as a function of the radius of stimulation.
We found that 0.012 cm was the smallest radius to induce a
sustained propagationgtjm min (0.012 cm) is less than K,
(0.020 cm), but the difference is much below the distance
over which transient propagation was found for the front
with constantK>K.;; .

In repolarization, the ratio of depolarized to repolarized
surface is the inverse of what exists at the fringe of the ex-
citation front. The ternrKoV(z,w,t)/dz in Eq. (2.2) is posi-
tive, such that the APD is prolonged, as shown in Fidp) 2
Again, results with normal and slow (V) functions are su-
perimposed. The variation of APD witk (A,.(K)) is impor-
tant, since the APD increases from 249.15 ms for a plane
wave (K=0, dash-dot curveto 337.35 ms at the critical
P PR, curvature, a variation of more than 35% in duration. The
0 100 200 300 400 500 -200 -100 0 100 relation between APD anld can be fitted within a 1% error

t (ms) D (ms) by the exponential functioffull curve in Fig. 2b)]
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FIG. 2. (a) Gx(K_) calculated with Eq(2.2) assuming constant A (K)=Age Yirk=an], 3.2
curvature O) and fitted by Eq(3.1) (full curve). The dashed curve
is 6,.(K) for a propagating target pattert) A..(K) calculated for . 1
a front with fixed curvature®) and fitted by Eq(3.2) (full curve). ~ With A=200.31 ms,a; =86.07 cm *, and 7=0.053 cm.

The dash-dot curve indicates the value for a plane witve@) and ~ Adain the target circular wavefrordashed cur\a.eglves .
the dashed curve those obtained for a propagating target patiern. Similar results at low curvature. However, the increase is
The AP at the central node for a plane watg(dashed curveand ~ Stopped due to the symmetry and stimulation effects at the
a front with K=K, =50 cm * (Kg,, full curve). Space-clamped center.

AP with initial conditions taken a¥,,, of the plane wave4) and Figure 2c) shows the action potential at one node Kor
the wave withkK =K, (O). (d) Diffusion current () for the plane =0 (plane wave, dashed cuveand K=50 cmi t (full
wave (dashed curvyeand the wave wittK =K, (full curve). curve. The APD at critical curvature is clearly longer, but it

is also associated with low&f,,,, at the upstroke. To find if

As the curvature of the propagation front increases, théhe prolongation of the APD was induced by the difference
ratio of the surface to depolarize to the excited surface in®f upstroke, we took the state of all variables at the time of

creases, inducing a slowing of the propagation. It is widelyVmax @S the initial condition for simulations of the space-
accepted that the linear expression, clamped model. The space-clamped action potentials given

by initial conditions taken from the plane wavé ) and the
0.(K)=6y— uK, u>0, (3.1)  critical curvature (O) come together and follow the same

time course as the action potential of the propagated plane

wave. The same procedure was repeated for all curvatures,
whereK is the curvatureg, the speed of the plane wave, and and the same APD was obtained for all cases. As shown in
w a hybrid diffusion coefficient, gives a good approximation Fig. 2(d), the prolongation of the APD at high curvature is
of propagation velocity as a function of the curvature in ancaused by the increase of the diffusion current, which peaks
excitable media at equilibriuni22,32. Figure 2a) shows  aroundD =0 during repolarization.
that Eq. (3.1, with 6,=7029cms! and pu
=1.05 cnt s 1, fits the values of..(K) obtained by simu-
lation. Results found with both nominal and slay(V) are After an upstroke, the slow gate variablesandj of I,
superimposed sincedeactivates after the upstroke and hasdeactivate, and propagation is impossible until recovery of a
no influence on the speed from rest. Equati®rl) holds for  minimal level of excitability. The minimum DID ;) is the
convex K>0) as well as concaveK(<0) fronts. Sustained minimal time after which a second activation front can be
propagation was found untiK, =50 cm !. For K>K,,, initiated. In general, it depends both on the parameters of the
the propagating AP was vanishing within a distance of 20Gstimulation and on the nature of the action potential after
nodes. which the stimulus is applied. After a first stimulation from

B. Refractory period and D i, (K)
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FIG. 3. () Dpyin(K) for the normal € ) and slow (O) models.

Full curves are the fits by Eq(3.3. (b) 6(D,K)/0,. vs D
—Dpmin(K) for the normal and slow modelsMs) and (c)
A(K,D)/A.(K) for the normal andV ¢ models.

rest, the same stimulus was applied at various prematurity t

find D in(K), the variation of theD ,;, with K. Figure 3a)
shows the results for the normad() and slow ©) model.
As expected, slower recovery fpprolongs theD,,;,. AsK
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6(K,D) = 0..(K)f (D~ Dmin(K)), (3.4

fo(y)=(1-Be Y 1-B,e V"),

whered..(K) andD ,;,(K) are given by Eqs(3.1) and(3.3),
and[B;,B,,r;,7,] take the value$0.205,0.300,19.0,3.34
for the normal model an0.420,0.084,135.7,338.6or the
slow model. In summanb .,;, increases withK and 6.,(K)
diminishes, butd(K,D)/6.,(K) can be expressed as an in-
variant function ofD — D ,;,(K). This shows that the DI is
more appropriate than the period of rotati@1] to express
the change of velocity as a function of prematurity.

A(K,D) were obtained by the same protocol used for
6(K,D). Figure 3c) shows thatA(K,D)/A..(K) plotted as
function of D defines invariant curves for the normal and
slow models. For the normal mod&{(K,D)/A..(K) varies
as a double exponential function with a steep initial increase,
followed by a slow drift toward the saturation value. In the
slow model, the initial phase has a sigmoid appearance, but
tends toward the same saturation value and its variation
comes at higher DI. Thus, delaying the recoveryl of ex-
citability increase® ,,;, and extends the DI interval with low
APD values. The curves were fitted with the relation

A(K,D)=A.(K)F(D), (3.5

F(D)={1—a,+B(D) —l,e P2y

wY+
B(D)=a,—|,e P/,
with the sameA.(K) [Eqg. (3.2] for both models and
[a,l1,71,W,V,l5, 7] equal to[0,3.9,29.2,1,0,0.45,166,.8or

the normal model anfD.66,0.13,278.7,143.9,17.6,0.62,94.1
for the slow model.

D. Clue to stability

increases, more current is also needed to sustain propagation, The stability of MBR-type models has been analyzed for
so that theD ,;, increases. The effect is much more impor-the isolated cell and the one-dimensional cable and loop
tant for the slow modeD ,,;,(K) was fitted with the second- [14,15,17,3% In all cases, results of the ionic models were
order polynomial shown to be largely reproduced by low-dimensional models
using the DI as an independent variable. In these low-
3.3 dimensional models, period-1 responses occur wien
, +A(D)=T, whereT is either the constant stimulation period
with ~ [do,d;,d] equal to [34.6,0.29,0.01B and (paced membrane and cabt® the period of circulatiorire-
[68.5,3.07,0.0 for the normal and slow models, respec- gntry on Ioop. For cable and loop, the equality holds for all
tively. points in the medium. The stability of the period-1 solution is
lost at theT corresponding to the critical DI value where

Dmin(K)=do+d{K+d,K?,

C. Velocity 8(K,D) and AP duration A(K,D): General

representations dA =1 (3.6)

crit

dD

Results of premature stimulations were used to obtain
0(K,D) for each value oK. The propagation velocity is a
function of bothD and K. However, as shown in Fig.(B), Consider the stable rotation of an activation front in an iso-
plotting 6(K,D)/6.(K) as a function ofD—D,;,(K), tropic and homogeneous annulus with internal and external
whereD stands for the DI, produces curves that are indepenradiusr;, and ry,; and no flux boundary conditions. The
dent of K for both the slow and normal models. For the activation front is a curve extending from, to ry,, that
normal model, there is a steep increas@@,D)/0..(K) in rotates with a fixed periodl. The propagation velocity
a small interval neab ,;,(K), while the variation is much 6(K,D) is everywhere normal to the front. At,, the no-
more progressive for the slow model. Both curves were fittedlux boundary condition constraing to be tangent to the
with the double exponential function, circumference. ZykoV[22] has shown that the curvature

D
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35 - - y - JA(K,D)/dD=1. Ifitis larger thamD,;,(K), it is the small-
est DI value to get a stable period-1 circulation. We define
kI 1 D« (K) as
2.51 D (K) Dcrit(K) if Dcrit(K)>Dmin(K)a (3 1@
~ r = . .
,S\ Al >\ st normat st Dmin(K) if Dcrit(K)stin(K)-
Q r o
e s slow ~ In the slow model, there are two valuesf,;; because of
=~ 18 o the sigmoidal form ofA(K,D) [Fig. 3b)]. The upper value
e TR was kept for calculation. The insertion &f; in Eq. (3.8
1t S " min, stow ey gives, withy =D ¢(K) — D in(K),
S T 0. (K)fo(y)[Ds(K) + A(K,Dg(K))]
........................... rofK)= .
rmin,normal 277
% 10 20 30 40 50 (3.1

rs«(K) is shown in Fig. 4 for the normal modéull curve)
FIG. 4. 1, [Eq. (3.9] andr, [Eq. (3.10] as a function oK and the slow mode{dashed curve For the normal model,

for the normal(dotted and full curvesand the slow(dash-dot and Dst=Derit for all K, while for the slow model, there is a
dashed curvésmodels. maximum K value from which Dg(K)=Di,(K) and

rst(K):rmin_(K)- _
must be maximum at;,. As a first approximation, assume  When K is low, Ds=Dc;; for both models. Since the
also that the curvatures of activation and repolarizationv@lue of D¢y does not vary much with, the decrease of

fronts are the same. Then, @}, the relation rerit(K) is controlled by the drop ob..(K) and f,(Ds(K)
—Dmin(K)). In the normal modelD,,,;, is almost constant,
27, but it increases rapidly in the slow modélig. 3(b)], which
= 9(K,D) =D+A(K,D) (3.7) explains whyr .,i:(K) has a higher slope.
If the criterion of stability is valid, the area oveg(K)
must be satisfied. corresponds to stable period-1 circulation, and propagation
At D,,in(K), the minimum value at which propagation may be sustained but not period-1 forK] values between
can be sustained, E¢3.7) becomes r(K) andr,,(K). At low K, rg, is larger for the slow
model, becaus®.,;; is larger (200 msvs 170 mskit=0).
O(K, D min( K)ID min(K) + A(K, D in(K)) ] At higher curvature, the lower velocity of the slow model
Fmin(K) = 2 compensates for the differencelin,;;, and the slow model

(3.9 has a lowerrg,. For K<5.4 cm'!, bothrg, andr, are
larger in the slow model. Beyond =5.4, slowing 7; de-
and, by Eq.(3.4), creases the minimal radius for stable propagation but reduces
the possibility of non-period-1 reentry.
0:(K) f 4(0)[ D min(K) + A(K, D in(K))]

2w E. Reentry in an annulus
(3.9

I min(K)=

The stability of propagation also depends on the addi-
Sorin(K), the minimum radius for propagation with curva- tional constraints imposed by the spatial extension of the
ture K, depends on the opposite effects &f(K), which front throughout the annulus. Different kinematic descrip-
decreases with, and onD;,(K) +A(K,Din(K)), which tipns of propagation in two-dimensioné&D) excitable me-
increasesr ;y(K) for the nominal(dotted curvg and slow ~ dia have been propos€@2,29,32,39,4D Zykov [22] has
(dash-dot models are shown in Fig. 4. At low, the in- considered the activation front as a continuous line and de-
crease 0f Dyin(K) +A(Dmin(K)) is dominant, andr i, scribed the change of velocity along a stable rotating front as
grows.

The balance is reversed at high The effect is much %:w_KV:fly
more pronounced for the slow model because the increase of ds
D min With K is more importanfFig. 3(a)]. Slowing 7; was
done to reflect in a crude fashion the fact that class-1A drugs d_V_ Ko=f 31
are known to delay the recovery of excitabilitg7,38. It ds 0=tz (319

thus increases,in(K). Equation(3.9) provides a lower es-

timate forr ,,;,(K), since it is supposed that propagation canwhere w is the angular velocitys, v, andK are, respec-

be sustained witld =D ,;,(K) constant along the circumfer- tively, the speed normal and parallel to the front, and the

ence of the annulus. This is not the case in a ring for whictcurvature, which are functions & the curvilinear coordi-

the stability criterion is given by E(3.6). nate along the front. In an annulus with no flux boundary
If we accept that the same criterion applied to the annulusgonditions at the innerr(,,) and outer ¢, radii, the solu-

then Dg;(K) corresponds to the value for which tion must satisfy the constraints
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v=0 atr;, andrg-. (3.13

Since#d andv are functions oK andD, each point along the
front is also characterized by a vall¥s) that satisfies the

additional constraint

2
—=D(s)+AD(5) K(9)). (3.19

Assuming that the curvatures at the excitation front and the

repolarization front are the same, then

dD  dA

ds  ds’

do 96 dK 36 dD

ds~ K ds aD ds’ (315

dA_ JA dK  4A dD
ds 9K ds oD ds’

Putting together Eq$3.12 and(3.15 and using the notation
y«= dyl ax for partial derivatives, the final system is given by

dD_ f,
ds A’

dK 4 6

gl (310
dv_f
ds 2

. Ok
W|th hl: HD_ A_(AD+ 1)
K

The system must be solved betwegp andr,,; with the
constrainty3.13 and(3.14). As stated in Sec. lll D, at;,,
the constraints imply that

. 2’7Trin
D= k) AK:D) (3.17

:g(KvD)EDmin(K)

which defines an implicit relation betwe&nandD. For each
K, dg9(K,D)/dD<0, such that Eq(3.17) has either one or
no solution, i.e., the number of soluti@N) is given by

1 |f g(Kvain(K))ZDmin(K)
710 it (KD pin(K)<Dpin(K).

The systen(3.16) can be solved numerically for a gives,
with a method similar to the one described by Zykoy2a].
To do so, a value oK is chosen at;, and Eq.(3.17) is
solved by a Matlab minimization proceduf&lathWorks,
Inc.). If the solution exists foD, it provides the value o
by Eg. (3.14 and an initial condition of Eq(3.16. The

(@ (b)
2.5
- 2
2 i
§ &»: 1.5
> p
X
0.5
0
60 4 42 44 4.6 4.8
r (cm)
out
(d)
165 370
—~. 160 365
g H
a ~
155 360
55
1504 4.5 53
r (cm)

out

FIG. 5. (a) Solutions of Eq.(3.16 in the (v,K) plane for four
different initial conditions(IC) K;, in the caser;;=4 cm for the
normal modelO, <, and® correspond to the final stateray,, for
theK;,, IC shown in pane(b). The upper trajectory which is not an
acceptable solution, was obtained using the) (IC K;, plus
1078 em L. (b) K;, Vs rqy for acceptable solutiondc) T (full
curve, right ordinateandD;, (dashed curve, left ordingtesr ;-
(d) The form of the solution in space fog,,;=4.95 cm. The plot
was rescaled withr;,=0.5 cm andr,,=2.5 cm to improve the
viewing. The depolarizatior(full curve) and the repolarization
(dashed curvefronts are shown. After rotation, the two fronts are
superimposed.

if K(s)=Kc;=50 cm ! andD(s)=D,i,(K(s)). It ends at
the point wherey(s) =0, which corresponds to the constraint
atryye-

Figure 5a) shows the projection in tHev,K] plane of the
trajectories obtained for the normal model with=4 cm
and differentK at r;, (K;,). The limit case for acceptable
solutions is the trajectory for whict converges asymptoti-
cally towardK=0. It corresponds to propagation in an infi-
nite medium (,,— ). Trajectories above this curve are not
solutions. BecausK is always maximum at,,;,, the period
of rotation must decrease as a functiorr gf; [Fig. 5(c), full
curvel. There are two ways to decrease the speed;at
increasingK or decreasind. However,D cannot be dimin-
ished because it is constrained by the relat{@ri4) [Fig.
5(c), dashed curve Hence K;, must increase as a function
of ryue [Fig. 5(b)]. The rise of K;, saturates forrg,
~4.5 cm. Indeed, when,,—r;,>0.5 cm,K;, is as it is in
an infinite medium.

Figure d) shows the form of the activatioffull curve)

system is then integrated using Rosenbrock’s stiff integratoand repolarization fron{dashed curjein space forrg,;

of the Matlab ordinary diffential equatiof©ODE) suite[41].

=4.95 cm. It corresponds to the lower trajectory in paagl

The trajectory in th¢ D,K,v] space is an acceptable solution The ODE solver provides a discretized approximation of the
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FIG. 6. Characteristics of the propagating wave in an un-
bounded ring as a function of,, from Eq.(3.16) with the functions
derived from the normal model. Four variants of the low-
dimensional model, which included the complete modtill
curve, 6(K,D) and A=200 ms(dashed curje A=30 ms(dash-
dot curve, and 6,,(K) only (dotted curve The case with9(K,D)
andA(0,D) is superimposed on the complete mode): curvature
at the inner boundar¥;,, (b) period of rotation,(c) diastolic in-
terval DI atr;,, and(d) APD atr;, .

trajectory by the set of pointss;, 6; ,K;,D;,i=1,2,...n}.
First r(s;)=r; is computed using the relatiom?r?=yv?

+ 6?2 [Eq. (6.23 in [22]]. Then the increment irp (A )
betweerr; andr; , ; is calculated by triangulation, assuming
that ;.1 —s; can be approximated as a straight line. The
approximation is justified, since the maximulp is of the
order of 10°° rad. The repolarization front was defined as
the set of points witlb =0. The figure was scale@dee cap-
tion) to get a clearer picture of the fronts. The portion of the
front with K<0 corresponds to a tiny segment ne&gy,;.
After rotation, the repolarization front is superimposed al-

2 2
T (em) T (cm)

FIG. 7. Same as Fig. 6 for the functions coming from the slow
model. The dashed curves are obtained With170 ms.

meaning that the modulation of APD B¢ has minimal in-
fluence on the solutions because never becomes high
enough[panel (a)] for the correction to be importarjsee
A.(K) in Fig. 2]. It means that, for each,,, DI and APD
can be considered constant in space and the activation and
repolarization fronts have the same curvature. Gagewith
A=A(0D,), gives a much too high minimal value foy,
[panel(a), dashed curvk but comes closer to the complete
model value forA=30 ms (dash-dot curve This can be
understood by comparing the range of APD covered by the
complete model to the fixed levels used for calculation
[panel(d)]. SinceA=30 ms is close to the minimum APD
reached for both models, its allows a good approximation of
Dmin [panel(c)], of the period rotation at low r;, [panel
(b)], and hence of the minimai,. However, APD is a fast
increasing function of;,, , such that using a fixed APD gives

a poor reproduction ob;, as a function ofr;, [panel(c)].

most everywhere on the activation front, such that the hyD;, increases too rapidly, as well @ panel(b)], sinced is

pothesis of equal curvature used in E¢3.16 for the two
fronts is fulfilled.

Solutions were computed as a functionrgf for an infi-
nite medium (,,— ) for both the norma(Fig. 6) and slow
models(Fig. 7). To delineate the effect d and D on the
solutions, simulations were done with:

(i) 6,.(K) only (dotted curve

(i) 6(K,D) and APD constant fixed &(Ds,) as defined
in Eq. (3.10 (normal, 170 ms; slow, 200 ms; dashed cuyrve
or 30 ms(dash-dot curve

(i) (K,D) andA(0,D).

(iv) (K,D) andA(K,D) (full curve).

The curves for casesiii) and (iv) are superimposed,

also an increasing function &f. The difference in the period
of rotation is more important for the slow model, for which

the effect onD and 6 is more pronounced. In summary,

0(K,D) andA(D) are needed for a good representation of

the dynamics, but the effect & on APD can be neglected.
This is emphasized by the comparison of the complete model
with case(i) (dotted curvg which included onlyé..(K).

Because the slowing of propagation at low DI is lacking, the
curvature of casé) is larger. Besides, the main factor fixing

the minimumr;, (0.33 cm, normal model; 0.578 cm, slow

mode) in the complete model B ,;,(K), whose calculation
requiresA(D). For casdi), the minimumr;,, is fixed only by
K¢r, giving a much too short minimal;, (1/K.,=0.02 cm
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(a) (b) possible. Previous works on the paced space-clamped MBR
model had shown that the APD dispersion curve was the
main determinant of the entrainment response and that it
could be accurately represented by an invariant function of
the DI.

The ability of the simple iterative modeD;, =T
—A(D,) to reproduce the bifurcation structure of the paced
MBR model has clearly established that the DI is more ap-
propriate than the period of stimulation to describe the dy-
namics[16]. Further works on reentry in a loop have also
(©) (d) : proven thatA(D)! complemented_b_y a functioﬁ!(D) that
was also invariant, were sufficient to build a low-
dimensional model reproducing the main features of the re-
entry regimes as a function of the radius of the 4.
Accordingly, we chose the DI to express the prematurity, and
looked for functional representations of APD afdhat, for
K=0, would be similar to those used for the one-
dimensional loop. Fo®, these two constraints led us to a
representation different from those of previous works in
which APD was discarded and the period was used as an

FIG. 8. Depolarization(full curve), repolarization (dashed Independent variablg23,24. The formulation was usually
curve, and D, (dotted curvé fronts for the normala),(c) and  intended to be applied to regimes of low and moderate cur-
slow mode|(b),(d) for rin:O_G Cm(top rovv) andrin:rcm (bottom Vature[3l,32. The APD restitution curve has to be included
row). These curves separate the domain into three distinct regiong? any realistic model of a cardiac excitable cell, since the
1, AP; 2, refractory periodRP); and 3, excitable gafEG). plateau of the action potential and its sensitivity to prematu-

rity make cardiac cells different from neurons and adapted to
vs 0.33 cm and 0.578 cm for the normal and slow madels the pumping function of the heart.

The stability of the above solutions remains to be estab- [N A(K,D), the rate and curvature dependence are sepa-
lished. As an indication, the(§) in panel(c) of Figs. 6 and rated[Eq. (3.5]. For 6 [Eq. (3.4)], K acts both as a scaling
7 shows the value of;, whereD,, is equal toDg,. It is  factor[6.(K)] and as a translatiofif 4(D —Dpn) (K)] in
higher for the slow model. Sinc& at r.,;, is below the rate-dependent par..(K) is the well known linear ap-
5.4 cmi L, this agrees with the prediction made in Sec. IIl D. Proximation that remains surprisingly good, even onear

Finally, Fig. 8 shows the form of the solutions with,  Ke¢r- fy measures how much the prematurity exceeds the
=r (bottom row and 0.6 cm, which is closed tq;, for ~ local refractory period that is given b piy(K). As in-.
the slow model(top row. lout Was taken 1 cm larger than tended, these expressions gen_erallz_e those qbtqlned in the
rin, beyond the range where its variation may influence théspace-clamped and loop configurations for ionic models
solution around;, . Solutions are shown for the normft vyhere the slow memory effects on activation and repolariza-
column) and slow(right column model. The full curve is the tion are absent. _ _ _
activation front, and the dashed curve, the repolarization The functionsA and ¢ were used to investigate the spatial
front. After rotation, the two fronts are superimposed, excepProperties of the period-1 solutions. For edethro], the
nearr,,; where the high negative curvature imposed by the'elation linking DI and APD to the speed of propagation and
boundary condition induced a noticeable reduction ofahe to the period of rotation insures the uniqueness of the solu-
The dotted curve is the locus of the points with tionS. It ShOWS Wh)A(K,D) haS to be included in the mOdel.
=Dmin(K). Region 1 encloses all the points where the actiorP min(K) is the main determinant at;, in both the normal
potential is not finished; regions 2, the points that are still inand slow modelsDy limits the maximum curvature that
their refractory period. Region 3 corresponds to the excitabléan be reached in period-1 solutions in a range where the
gap, in which a new action potentia| could propagate_ Foﬂnﬂuence ofK on APD can be neglected. Furthermore, the
bothr;,, the slow model has a smaller regiorisinallerA), ~ Vvariation of the DI for each value af, andr,, is minimal,
|0nger region a]ongerDmin(K)]’ resumng in a |arger excit- such that the a..Ct|Vat|0r.] and I‘e.polarlzatlon ha.Ve the same
able gap(EG) (region 3. Moving from the center to the Curvature. This is consistent with the numerical results of
periphery,K and D, decrease, such that the EG enlarges[42] with the Luo-Rudy ionic mode[43]. In their simula-
SinceD i, is much more sensitive t§ in the slow model, it  tions, the values of APD measured rgf are just slightly

is responsib|e for the en|arged EG. above those found a'[but. The variation OfDmin with K is
much more important in the slow model, explaining why
IV. DISCUSSION I min IS greater than for the normal model, despite a slower

speed of propagation at low DI.

Our first goal was to obtain general expressions for the Results for the space-clamped model and the one-
rate and curvature dependence of APD a@nhthat could be dimensional loop show that period-1 responses lose their sta-
used to study any transient or sustained regime of propag#ility when they reach the DI value for whichA/dD=1
tion in a 2D disk beyond the period-1 solution analyzed in[Eqg. (3.6)]. The results of Xieet al.[42] suggest that a simi-
this paper. We were thus looking for relations that were apiar criterion could be applied in an annulus. If E§.6) in-
propriate for a range of curvature and prematurity as large adeed provides an adequate criterion of stability, it involves
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the total derivative oA and can be written as a constant curvature. The simulations of the simplified model
show that, even at=r,;,, the variation of curvature takes
d_A: %4_ % d_K 4.1) place in two thin regions in the vicinity af;,, andrg,, K
dD D 9K dD’ ' remaining nearly constant everywhere else. This suggests

] o ) that the functions may indeed provide a good approximation
Since the effect oK on APD is minimal for period-1 solu-  of the dynamics. It also gives some indications of the spatial
tions (9A/9K~0), the criterion of stability for an annulus giscretization needed to simulate the ionic model on the an-
and ring would be similar. nulus. Since th& variation is confined near,, andr ., it

The period at the critical poinfcrit=Derit + A(Derit) . IS suggests using a denser mesh in these regions to avoid a
thus determined by the characteristics of the restitutiorhymerical artifact. Results presented by Xteal. [42] show
curve, andr ;= 0(K,Deyit) Terie/2m. If Doy is in the flat 3 dependence of the solution an,,, even for a width
portion of f,, as it is the case in the normal mode.:  greater than 1 cm beyond, . However, they used a mesh
depends only on the curvature and ®g;,. For the slow  with fixed angular width and fixed increment of radius,
model, the shift ofD,;,(K) is so important thaf, is not  which gives a coarser spatial resolutionraisicreases. This

saturated aD.,j; andf, must still be considered in the cal- may explain the discrepancy between our conclusion and
culation ofrc;. In generalr.; depends on the balance theirs on the influence af,,,.

between, on the one hand, the valuelyf,;;, and on the
other hand, the slowing of propagation coming from the in- V. CONCLUSION
fluence ofK on 6.,(K) andD ,;,(K). In our simulationsr .;;
is slightly greater for the slow model than in the normal
model. There is some indication that slowing the gate vari
able j may stabilize the spiral waves in a continuous 2D
medium[44], which is not consistent with what we found for
a disk. This may come from differences in thg¢K,D),
Din(K) and 6(K,D) functions of the ionic model with
which these simulations were done. It may also indicate th
the core of the spiral makes a specific contribution that must
be included in the low-dimensional model so that it can be
applied to a medium without an obsta¢R6). This work was supported by a grant from the Natural
The functionsD ,;(K), 6(K,D), andA(K,D) were ob-  Sciences and Engineering Council and the Medical Research
tained through an approximation, assuming propagation witiCouncil of Canada.

Varying the obstacle radius changes the period-1 solution.
In this regime K remains low such that the dependencéof
on APD can be neglected. The spatial variation of DI also
being limited, the same curvature can be assumed for activa-
tion and repolarization fronts. HoweveA(D), Din(K),
and 0(K,D) are necessary for an adequate reconstruction of
at[he solution.
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