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Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes

P. Comtois and A. Vinet
Institute of Biomedical Engineering, Universite´ de Montréal and Research Centre, Hoˆpital du Sacre´-Coeur,

5400 Gouin West Blvd, Montre´al, Québec, Canada H4J 1C5
~Received 16 December 1998!

Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias@1–5#.
Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau,
and a late repolarization phase. The plateau phase determines the action potential duration~APD! during which
the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies
much with prematurity and this change has been shown to be the main determinant of the dynamics in models
of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be
an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of
this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in
cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and
prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the
ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical
model describing the propagation of period-1 solutions around an annulus.@S1063-651X~99!07310-9#

PACS number~s!: 87.19.Hh, 05.45.2a
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I. INTRODUCTION

Reentry is a major mechanism underlying the initiati
and perpetuation of many cardiac arrhythmias. Transien
sustained propagation has been shown to occur aroun
anatomical obstacle, or around a region of partially or tota
unexcitable tissue@1–3#. Sustained activation fronts with th
form of vortices have been observed in healthy substra
@4,5#. A large amount of modeling work has also been d
voted to reentry, with approaches ranging from cellular
tomata to systems of partial differential equations involvi
high-dimensional ionic models@6–9#. This paper is focused
on reentry in an homogeneous two-dimensional annulu
ventricular excitable tissue with a central hole.

Stimulated ventricular myocytes produce action poten
characterized by a fast upstroke, a long-lasting plateau, a
late repolarization phase. The plateau phase determine
action potential duration~APD! during which the system re
mains refractory, a property essential to the synchroniza
of the heart cycle. The APD varies extensively with prem
turity and this change has been shown to be the main de
minant of the entrainment response in a model of paced c
and paced cable, and of the regimes of reentry in a o
dimensional loop@10–17#. In ionic models, the plateau phas
requires the inclusion of at least one additional inward c
rent acting on an intermediate time scale between the
activating current of the upstroke and the slow current
repolarization that makes the difference between nerve
and cardiac cell models. We used a modified Beeler-Re
~MBR! model of the cardiac myocyte, which is the simple
ionic model meeting this requirement. We also used t
model because its dynamics have been thoroughly studie
the space-clamped, cable, and loop configurations. In th
settings, the main features of the dynamics of the M
model have been reproduced by simple nonlinear lo
dimensional models@14,16,17#. Our purpose is to extend
these simple models to the annulus.
PRE 601063-651X/99/60~4!/4619~10!/$15.00
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Curvature has been shown to be a determinant of pro
gation both in the experimental and the theoretical mode
cardiac extended tissue@18–21#. Zykov has developed a ki
nematical model with a linear dependence between velo
and curvature@22# that is not accurate in the presence
dispersion. The kinematical model was extended@23,24# to
include the effect of rate-dependent change of velocity, a
stability analysis has shown that perturbations of curvat
near the core may destabilize the solution@25,26#. Other
simple representations were proposed using singular pe
bation methods on Fitzhugh-Nagumo-type~FHN! models
@27–30#, and an eikonal relationship was developed usin
finite renormalization method@31,32#. The APD restitution
was not considered in these works.

The objective of this paper is to combine both curvatu
and prematurity effects in a kinematical model of propag
tion in cardiac tissue. First, an approximation of the ion
model is used to obtain the effects of curvature and pre
turity on the speed of propagation, the APD, and the abso
refractory period. Functions are obtained to describe th
quantities. Two versions of the ionic model are studied t
differ in their rate of excitability recovery. The functions a
used in a kinematical model describing the propagation
period-1 solutions around an annulus that is solved num
cally. The influence of prematurity and curvature on the fo
and stability of the solutions is discussed.

II. METHODS

A. Model

The well-known cable equation in a two-dimension
~2D! homogeneous isotropic excitable cardiac medium e
bedded in an unbounded external medium of negligible
sistivity is

1

r
¹W •¹W V5SS CM

]V

]t
1I ionD , ~2.1!
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4620 PRE 60P. COMTOIS AND A. VINET
where V is the transmembrane potential (mV), CM is the
membrane capacitance (1mF cm22), S the surface-to-
volume ratio (0.4mm21, assuming cylindrical cells with a
radius of 5mm), andr is the mean intracellular resistivit
(200 V cm). The membrane ionic model used to calcul
I ion is a modification of the Beeler-Reuter model of the ve
tricular myocyte cell membrane@33#.

The gating variablesyi of the MBR model are governe
by a first-order process described by a steady-state v
yi`(V) and a time constanttyi

(V). The total ionic current is

the sum of a fast sodium currentI Na , a secondary inward
currentI si assumed to be carried mainly by calcium ions
delayed outward potassium currentI K , and a time-
independent potassium currentI K1. Here, I Na5ḡNam

3h j(V
2ENa), where ḡNa515 ms cm22 is the maximum conduc
tance;ENa540 mV is the sodium equilibrium potential; an
m, h, and j are the gating variables.I si5ḡsid f„V
2Esi(@Ca#)…, where gsi50.09 ms cm22 is the maximum
conductance,Esi(@Ca#) is a calcium-dependent reversal p
tential, andd and f are the gating variables; in this mode
I K5I K11x1I x1 is governed by a gating activation variab
x1 and a fixed equilibrium potentialEK5294 mV, andI K1
is an empirical function. To study the effect of slower@Na#
channel recovery, simulations where done with the nom
t j ~normal model! and with t j increased by a factor of 6
~slow model!.

Figure 1 shows an isopotentialV̄ in Cartesian coordinate
at timest and t1Dt. In the new coordinates defined by th
unit vectorsnW and tW in the direction normal and tangent t
the equipotential and the associated coordinatesz andw, Eq.
~2.1! becomes@22#

1

rSS ]2V

]z2
1

]b

]s

]V

]z
1

]2V

]w2D 5CM

]V

]t
1I ion . ~2.2!

FIG. 1. Schematic representation of a wave propagating wi

local curvatureK. uW is the speed in the direction of propagation
the front, u the speed of propagation perpendicular to the isol

~parallel to the unit vectornW ), b the angle between the real speeduW

andunW , tW the unit vector parallel to the isoline, ands the curvilinear
coordinate of the isoline.
e
-
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al

SincenW coincides with the direction of¹W V, the gradient
alongtW is null, so that]2V(z,w,t)/]w250. The term]b/]s
is equal to the curvatureK(s) of the equipotential. For a
circular front propagating from the middle of a circular m
dium, the correspondence isK51/r andz5r . If K is taken
as constant, Eq.~2.2! becomes a one-dimensional system th
represents the propagation of a waveform with a cons
arbitrary curvature. This approximation was used to stu
the effect of curvature on the speed of propagation and
the repolarization. The sign of curvatureK is positive for a
convex front due to the vector convention used in the dev
opment.

Equation ~2.2! was simulated for a finite mediumz
5@0,L# with no flux boundary conditions.L was set to
10 cm~2000 nodes!. The system was first discretized in tim
with a constant time step (Dt50.002 ms) andI ion was
solved with an hybrid method described in@34,35#. For each
time step, the system becomes a second-order ordinary
ferential equation, which was approximated with a Galer
finite element method projected on a linear basis funct
~hat function! and a regular spatial mesh (Dz50.005 cm)
@36#. The resulting tridiagonal linear system of equations w
solved with a simplified LU decomposition method. Th
choice ofDt and Dz is motivated by the fact that depola
ization is the stiffest part of the process. Programs were w
ten in C and run on an SGI workstation~Silicon Graphics!.

B. Simulations

Simulations were performed for different values of t
parameterK with normal and slowt j . Starting with the sys-
tem at its resting state and a given value ofK, propagation
was initiated by applying fortst51 ms a stimulation ofI st
5100 mA/cm2 on 40 nodes starting atL50. During propa-
gation, the beginning of the action potential~AP! at each
node (tdep) was taken as the instant at whichdV/dz reaches
its maximum. The end of the action potential (t rep) was de-
fined as the time at whichV crosses250 mV during repo-
larization. The speed of propagationu`(K) was calculated
from the difference oftdep between points spaced by te
nodes to reduce discretization error. The APD at each n
was calculated as the difference betweent rep and tdep.
Propagation was also initiated by applying premature stim
lations at various times after the onset of the first AP. T
diastolic interval~DI! was then defined at each node as t
time from the end of the test AP to the beginning of the n
AP. Expressions were developed to represent the variatio
u and APD as functions ofK and DI. Results of simulation
were fitted using a least-squares minimization procedure
Matlab ~Mathworks Inc., MA!.

III. RESULTS

A. Velocity and A from rest

To evaluate the effects of curvature on velocity and AP
from rest, measurements were averaged over a set o
nodes in the middle of the media~i.e., 5 cm from the simu-
lation site!. This was done to overcome the effects of boun
aries. Simulations have shown an increase of velocity fo
distance less than 0.07 cm near both ends of the media fo
K values.
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As the curvature of the propagation front increases,
ratio of the surface to depolarize to the excited surface
creases, inducing a slowing of the propagation. It is wid
accepted that the linear expression,

u`~K !5u02mK, m.0, ~3.1!

whereK is the curvature,u0 the speed of the plane wave, an
m a hybrid diffusion coefficient, gives a good approximati
of propagation velocity as a function of the curvature in
excitable media at equilibrium@22,32#. Figure 2~a! shows
that Eq. ~3.1!, with u0570.29 cm s21 and m
51.05 cm2 s21, fits the values ofu`(K) obtained by simu-
lation. Results found with both nominal and slowt j (V) are
superimposed sincej deactivates after the upstroke and h
no influence on the speed from rest. Equation~3.1! holds for
convex (K.0) as well as concave (K,0) fronts. Sustained
propagation was found untilKcr550 cm21. For K.Kcr ,
the propagating AP was vanishing within a distance of 2
nodes.

FIG. 2. ~a! u`(K) calculated with Eq.~2.2! assuming constan
curvature (s) and fitted by Eq.~3.1! ~full curve!. The dashed curve
is u`(K) for a propagating target pattern.~b! A`(K) calculated for
a front with fixed curvature (s) and fitted by Eq.~3.2! ~full curve!.
The dash-dot curve indicates the value for a plane wave (K50) and
the dashed curve those obtained for a propagating target patter~c!
The AP at the central node for a plane wave (K0, dashed curve! and
a front with K5Kcr550 cm21 (K50, full curve!. Space-clamped
AP with initial conditions taken atVmax of the plane wave (n) and
the wave withK5Kcr (s). ~d! Diffusion current (I d) for the plane
wave ~dashed curve! and the wave withK5Kcr ~full curve!.
e
-

y

s

0

These results were also compared with those of Eq.~2.2!
with the modifications corresponding to the propagation o
circular target wavefront@dashed curve in Fig. 2~a!#. Stimu-
lation was applied on the first ten nodes of the mediumr
50.05 cm,K520 cm21). In this case, the curvature chang
continuously as propagation proceeds. Nevertheless, re
of both models stay close toK515 cm21. Near the center,
the transient associated with the stimulation, the accum
tion of current due to the symmetry condition, as well as
steep change of curvature mask the relation between s
and curvature. We have also constructed a curve of
threshold current as a function of the radius of stimulatio
We found that 0.012 cm was the smallest radius to induc
sustained propagation.r stim,min (0.012 cm) is less than 1/Kcr
(0.020 cm), but the difference is much below the distan
over which transient propagation was found for the fro
with constantK.Kcrit .

In repolarization, the ratio of depolarized to repolariz
surface is the inverse of what exists at the fringe of the
citation front. The termK]V(z,w,t)/]z in Eq. ~2.2! is posi-
tive, such that the APD is prolonged, as shown in Fig. 2~b!.
Again, results with normal and slowt j (V) functions are su-
perimposed. The variation of APD withK „A`(K)… is impor-
tant, since the APD increases from 249.15 ms for a pl
wave (K50, dash-dot curve! to 337.35 ms at the critica
curvature, a variation of more than 35% in duration. T
relation between APD andK can be fitted within a 1% erro
by the exponential function@full curve in Fig. 2~b!#

A`~K !5A0e21/[t(K2a1)] , ~3.2!

with A05200.31 ms, a1586.07 cm21, and t50.053 cm.
Again the target circular wavefront~dashed curve! gives
similar results at low curvature. However, the increase
stopped due to the symmetry and stimulation effects at
center.

Figure 2~c! shows the action potential at one node forK
50 ~plane wave, dashed curve! and K550 cm21 ~full
curve!. The APD at critical curvature is clearly longer, but
is also associated with lowerVmax at the upstroke. To find if
the prolongation of the APD was induced by the differen
of upstroke, we took the state of all variables at the time
Vmax as the initial condition for simulations of the spac
clamped model. The space-clamped action potentials g
by initial conditions taken from the plane wave (n) and the
critical curvature (s) come together and follow the sam
time course as the action potential of the propagated p
wave. The same procedure was repeated for all curvatu
and the same APD was obtained for all cases. As show
Fig. 2~d!, the prolongation of the APD at high curvature
caused by the increase of the diffusion current, which pe
aroundD50 during repolarization.

B. Refractory period and Dmin„K…

After an upstroke, the slow gate variablesh and j of I Na
deactivate, and propagation is impossible until recovery o
minimal level of excitability. The minimum DI (Dmin) is the
minimal time after which a second activation front can
initiated. In general, it depends both on the parameters of
stimulation and on the nature of the action potential af
which the stimulus is applied. After a first stimulation fro
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4622 PRE 60P. COMTOIS AND A. VINET
rest, the same stimulus was applied at various prematurit
find Dmin(K), the variation of theDmin with K. Figure 3~a!
shows the results for the normal (L) and slow (s) model.
As expected, slower recovery forj prolongs theDmin . As K
increases, more current is also needed to sustain propaga
so that theDmin increases. The effect is much more impo
tant for the slow model.Dmin(K) was fitted with the second
order polynomial

Dmin~K !5d01d1K1d2K2, ~3.3!

with @d0 ,d1 ,d2# equal to @34.6,0.29,0.013# and
@68.5,3.07,0.04# for the normal and slow models, respe
tively.

C. Velocity u„K,D… and AP duration A„K,D…: General
representations

Results of premature stimulations were used to ob
u(K,D) for each value ofK. The propagation velocity is a
function of bothD andK. However, as shown in Fig. 3~b!,
plotting u(K,D)/u`(K) as a function of D2Dmin(K),
whereD stands for the DI, produces curves that are indep
dent of K for both the slow and normal models. For th
normal model, there is a steep increase ofu(K,D)/u`(K) in
a small interval nearDmin(K), while the variation is much
more progressive for the slow model. Both curves were fit
with the double exponential function,

FIG. 3. ~a! Dmin(K) for the normal (L) and slow (s) models.
Full curves are the fits by Eq.~3.3!. ~b! u(D,K)/u` vs D
2Dmin(K) for the normal and slow models (Ms) and ~c!
A(K,D)/A`(K) for the normal andMs models.
to

on,

in

n-

d

u~K,D !5u`~K ! f u„D2Dmin~K !…, ~3.4!

f u~y!5~12B1e2y/t12B2e2y/t2!,

whereu`(K) andDmin(K) are given by Eqs.~3.1! and~3.3!,
and @B1 ,B2 ,t1 ,t2# take the values@0.205,0.300,19.0,3.54#
for the normal model and@0.420,0.084,135.7,338.6# for the
slow model. In summary,Dmin increases withK andu`(K)
diminishes, butu(K,D)/u`(K) can be expressed as an i
variant function ofD2Dmin(K). This shows that the DI is
more appropriate than the period of rotation@31# to express
the change of velocity as a function of prematurity.

A(K,D) were obtained by the same protocol used
u(K,D). Figure 3~c! shows thatA(K,D)/A`(K) plotted as
function of D defines invariant curves for the normal an
slow models. For the normal model,A(K,D)/A`(K) varies
as a double exponential function with a steep initial increa
followed by a slow drift toward the saturation value. In th
slow model, the initial phase has a sigmoid appearance,
tends toward the same saturation value and its varia
comes at higher DI. Thus, delaying the recovery ofI Na ex-
citability increasesDmin and extends the DI interval with low
APD values. The curves were fitted with the relation

A~K,D !5A`~K !F~D !, ~3.5!

F~D !5H 12al1B~D !
D

wv1D
2 l 2e2D/t2J ,

B~D !5al2 l 1e2D/t1,

with the sameA`(K) @Eq. ~3.2!# for both models and
@al ,l 1 ,t1 ,w,v,l 2 ,t2# equal to@0,3.9,29.2,1,0,0.45,166.9# for
the normal model and@0.66,0.13,278.7,143.9,17.6,0.62,94.#
for the slow model.

D. Clue to stability

The stability of MBR-type models has been analyzed
the isolated cell and the one-dimensional cable and l
@14,15,17,35#. In all cases, results of the ionic models we
shown to be largely reproduced by low-dimensional mod
using the DI as an independent variable. In these lo
dimensional models, period-1 responses occur whenD
1A(D)5T, whereT is either the constant stimulation perio
~paced membrane and cable! or the period of circulation~re-
entry on loop!. For cable and loop, the equality holds for a
points in the medium. The stability of the period-1 solution
lost at theT corresponding to the critical DI value where

UdA

dDU
Dcrit

51. ~3.6!

Consider the stable rotation of an activation front in an is
tropic and homogeneous annulus with internal and exte
radius r in and r out and no flux boundary conditions. Th
activation front is a curve extending fromr in to r out that
rotates with a fixed periodT. The propagation velocity
u(K,D) is everywhere normal to the front. Atr in , the no-
flux boundary condition constrainsu to be tangent to the
circumference. Zykov@22# has shown that the curvatur
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PRE 60 4623CURVATURE EFFECTS ON ACTIVATION SPEED AND . . .
must be maximum atr in . As a first approximation, assum
also that the curvatures of activation and repolarizat
fronts are the same. Then, atr in , the relation

T5
2pr in

u~K,D !
5D1A~K,D ! ~3.7!

must be satisfied.
At Dmin(K), the minimum value at which propagatio

can be sustained, Eq.~3.7! becomes

r min~K !5
u„K,Dmin~K !…@Dmin~K !1A~K,Dmin~K !!#

2p
~3.8!

and, by Eq.~3.4!,

r min~K !5
u`~K ! f u~0!@Dmin~K !1A„K,Dmin~K !…#

2p
.

~3.9!

So r min(K), the minimum radius for propagation with curva
ture K, depends on the opposite effects ofu`(K), which
decreases withK, and onDmin(K)1A„K,Dmin(K)…, which
increases.r min(K) for the nominal~dotted curve! and slow
~dash-dot! models are shown in Fig. 4. At lowK, the in-
crease of Dmin(K)1A„Dmin(K)… is dominant, andr min
grows.

The balance is reversed at highK. The effect is much
more pronounced for the slow model because the increas
Dmin with K is more important@Fig. 3~a!#. Slowing t j was
done to reflect in a crude fashion the fact that class-IA dr
are known to delay the recovery of excitability@37,38#. It
thus increasesr min(K). Equation~3.9! provides a lower es-
timate forr min(K), since it is supposed that propagation c
be sustained withD5Dmin(K) constant along the circumfer
ence of the annulus. This is not the case in a ring for wh
the stability criterion is given by Eq.~3.6!.

If we accept that the same criterion applied to the annu
then Dcrit(K) corresponds to the value for whic

FIG. 4. r min @Eq. ~3.9!# and r st @Eq. ~3.10!# as a function ofK
for the normal~dotted and full curves! and the slow~dash-dot and
dashed curves! models.
n

of

s

h

s,

]A(K,D)/]D51. If it is larger thanDmin(K), it is the small-
est DI value to get a stable period-1 circulation. We defi
Dst(K) as

Dst~K !5H Dcrit~K ! if Dcrit~K !.Dmin~K !,

Dmin~K ! if Dcrit~K !<Dmin~K !.
~3.10!

In the slow model, there are two values ofDcrit because of
the sigmoidal form ofA(K,D) @Fig. 3~b!#. The upper value
was kept for calculation. The insertion ofDst in Eq. ~3.8!
gives, withy5Dst(K)2Dmin(K),

r st~K !5
u`~K ! f u~y!@Dst~K !1A„K,Dst~K !…#

2p
.

~3.11!

r st(K) is shown in Fig. 4 for the normal model~full curve!
and the slow model~dashed curve!. For the normal model,
Dst5Dcrit for all K, while for the slow model, there is a
maximum K value from which Dst(K)5Dmin(K) and
r st(K)5r min(K).

When K is low, Dst5Dcrit for both models. Since the
value of Dcrit does not vary much withK, the decrease o
r crit(K) is controlled by the drop ofu`(K) and f u„Dst(K)
2Dmin(K)…. In the normal model,Dmin is almost constant,
but it increases rapidly in the slow model@Fig. 3~b!#, which
explains whyr crit(K) has a higher slope.

If the criterion of stability is valid, the area overr st(K)
corresponds to stable period-1 circulation, and propaga
may be sustained but not period-1 for@r ,K# values between
r st(K) and r min(K). At low K, r st is larger for the slow
model, becauseDcrit is larger (200 ms vs 170 ms atK50).
At higher curvature, the lower velocity of the slow mod
compensates for the difference inDcrit , and the slow model
has a lowerr st . For K,5.4 cm21, both r st and r min are
larger in the slow model. BeyondK55.4, slowingt j de-
creases the minimal radius for stable propagation but redu
the possibility of non-period-1 reentry.

E. Reentry in an annulus

The stability of propagation also depends on the ad
tional constraints imposed by the spatial extension of
front throughout the annulus. Different kinematic descr
tions of propagation in two-dimensional~2D! excitable me-
dia have been proposed@22,29,32,39,40#. Zykov @22# has
considered the activation front as a continuous line and
scribed the change of velocity along a stable rotating fron

du

ds
5v2Kv5 f 1 ,

dv
ds

5Ku5 f 2 , ~3.12!

where v is the angular velocity.u, v, and K are, respec-
tively, the speed normal and parallel to the front, and
curvature, which are functions ofs, the curvilinear coordi-
nate along the front. In an annulus with no flux bounda
conditions at the inner (r in) and outer (r out) radii, the solu-
tion must satisfy the constraints
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4624 PRE 60P. COMTOIS AND A. VINET
v50 atr in and r out . ~3.13!

Sinceu andv are functions ofK andD, each point along the
front is also characterized by a valueD(s) that satisfies the
additional constraint

2p

v
5D~s!1A„D~s!,K~s!…. ~3.14!

Assuming that the curvatures at the excitation front and
repolarization front are the same, then

dD

ds
52

dA

ds
,

du

ds
5

]u

]K

dK

ds
1

]u

]D

dD

ds
, ~3.15!

dA

ds
5

]A

]K

dK

ds
1

]A

]D

dD

ds
.

Putting together Eqs.~3.12! and~3.15! and using the notation
yx5]y/]x for partial derivatives, the final system is given b

dD

ds
5

f 1

A1
,

dK

ds
5

f 1

uK
S 12

uD

h1
D , ~3.16!

dv
ds

5 f 2 ,

with h15uD2
uK

AK
~AD11!.

The system must be solved betweenr in and r out with the
constraints~3.13! and ~3.14!. As stated in Sec. III D, atr in ,
the constraints imply that

D5
2pr in

u~K,D !
2A~K,D ! ~3.17!

5g~K,D !>Dmin~K !

which defines an implicit relation betweenK andD. For each
K, ]g(K,D)/]D,0, such that Eq.~3.17! has either one or
no solution, i.e., the number of solution~N! is given by

N→H 1 if g„K,Dmin~K !…>Dmin~K !

0 if g„K,Dmin~K !…,Dmin~K !.

The system~3.16! can be solved numerically for a givenr in
with a method similar to the one described by Zykov in@22#.
To do so, a value ofK is chosen atr in and Eq.~3.17! is
solved by a Matlab minimization procedure~MathWorks,
Inc.!. If the solution exists forD, it provides the value ofv
by Eq. ~3.14! and an initial condition of Eq.~3.16!. The
system is then integrated using Rosenbrock’s stiff integra
of the Matlab ordinary diffential equation~ODE! suite @41#.
The trajectory in the@D,K,v# space is an acceptable solutio
e

r

if K(s)<Kcrit550 cm21 andD(s)>Dmin„K(s)…. It ends at
the point wherev(s)50, which corresponds to the constrai
at r out .

Figure 5~a! shows the projection in the@v,K# plane of the
trajectories obtained for the normal model withr in54 cm
and differentK at r in (Kin). The limit case for acceptable
solutions is the trajectory for whichv converges asymptoti
cally towardK50. It corresponds to propagation in an infi
nite medium (r out→`). Trajectories above this curve are n
solutions. BecauseK is always maximum atr min , the period
of rotation must decrease as a function ofr out @Fig. 5~c!, full
curve#. There are two ways to decrease the speed atr in :
increasingK or decreasingD. However,D cannot be dimin-
ished because it is constrained by the relation~3.14! @Fig.
5~c!, dashed curve#. Hence,Kin must increase as a functio
of r out @Fig. 5~b!#. The rise of Kin saturates forr out
'4.5 cm. Indeed, whenr out2r in.0.5 cm,Kin is as it is in
an infinite medium.

Figure 5~d! shows the form of the activation~full curve!
and repolarization front~dashed curve! in space forr out
54.95 cm. It corresponds to the lower trajectory in panel~a!.
The ODE solver provides a discretized approximation of

FIG. 5. ~a! Solutions of Eq.~3.16! in the (v,K) plane for four
different initial conditions~IC! Kin in the caser in54 cm for the
normal model.s, L, andd correspond to the final state atr out for
theKin IC shown in panel~b!. The upper trajectory which is not a
acceptable solution, was obtained using the (s) IC Kin plus
10213 cm21. ~b! Kin vs r out for acceptable solutions.~c! T ~full
curve, right ordinate! andDin ~dashed curve, left ordinate! vs r out .
~d! The form of the solution in space forr out54.95 cm. The plot
was rescaled withr in50.5 cm andr out52.5 cm to improve the
viewing. The depolarization~full curve! and the repolarization
~dashed curve! fronts are shown. After rotation, the two fronts a
superimposed.
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trajectory by the set of points$si ,u i ,Ki ,Di ,i 51,2, . . . ,n%.
First r (si)5r i is computed using the relationv2r i

25v i
2

1u i
2 @Eq. ~6.23! in @22##. Then the increment inf (Df)

betweenr i andr i 11 is calculated by triangulation, assumin
that si 112si can be approximated as a straight line. T
approximation is justified, since the maximumDf is of the
order of 1025 rad. The repolarization front was defined
the set of points withD50. The figure was scaled~see cap-
tion! to get a clearer picture of the fronts. The portion of t
front with K,0 corresponds to a tiny segment nearr out .
After rotation, the repolarization front is superimposed
most everywhere on the activation front, such that the
pothesis of equal curvature used in Eqs.~3.16! for the two
fronts is fulfilled.

Solutions were computed as a function ofr in for an infi-
nite medium (r out→`) for both the normal~Fig. 6! and slow
models~Fig. 7!. To delineate the effect ofK and D on the
solutions, simulations were done with:

~i! u`(K) only ~dotted curve!.
~ii ! u(K,D) and APD constant fixed atA(Dst) as defined

in Eq. ~3.10! ~normal, 170 ms; slow, 200 ms; dashed curv!
or 30 ms~dash-dot curve!.

~iii ! u(K,D) andA(0,D).
~iv! u(K,D) andA(K,D) ~full curve!.
The curves for cases~iii ! and ~iv! are superimposed

FIG. 6. Characteristics of the propagating wave in an
bounded ring as a function ofr in from Eq.~3.16! with the functions
derived from the normal model. Four variants of the lo
dimensional model, which included the complete model~full
curve!, u(K,D) and A5200 ms~dashed curve!, A530 ms ~dash-
dot curve!, andu`(K) only ~dotted curve!. The case withu(K,D)
andA(0,D) is superimposed on the complete model:~a! curvature
at the inner boundaryKin , ~b! period of rotation,~c! diastolic in-
terval DI at r in , and~d! APD at r in .
-
-

meaning that the modulation of APD byK has minimal in-
fluence on the solutions becauseK never becomes high
enough@panel ~a!# for the correction to be important@see
A`(K) in Fig. 2#. It means that, for eachr in , DI and APD
can be considered constant in space and the activation
repolarization fronts have the same curvature. Case~ii !, with
A5A(0,Dcrit), gives a much too high minimal value forr in
@panel~a!, dashed curve#, but comes closer to the comple
model value forA530 ms ~dash-dot curve!. This can be
understood by comparing the range of APD covered by
complete model to the fixed levels used for calculati
@panel~d!#. SinceA530 ms is close to the minimum APD
reached for both models, its allows a good approximation
Dmin @panel ~c!#, of the period rotationT at low r in @panel
~b!#, and hence of the minimalr in . However, APD is a fast
increasing function ofr in , such that using a fixed APD give
a poor reproduction ofDin as a function ofr in @panel~c!#.
Din increases too rapidly, as well asT @panel~b!#, sinceu is
also an increasing function ofD. The difference in the period
of rotation is more important for the slow model, for whic
the effect onD and u is more pronounced. In summary
u(K,D) and A(D) are needed for a good representation
the dynamics, but the effect ofK on APD can be neglected
This is emphasized by the comparison of the complete mo
with case~i! ~dotted curve!, which included onlyu`(K).
Because the slowing of propagation at low DI is lacking, t
curvature of case~i! is larger. Besides, the main factor fixin
the minimumr in (0.33 cm, normal model; 0.578 cm, slo
model! in the complete model isDmin(K), whose calculation
requiresA(D). For case~i!, the minimumr in is fixed only by
Kcr , giving a much too short minimalr in (1/Kcr50.02 cm

- FIG. 7. Same as Fig. 6 for the functions coming from the sl
model. The dashed curves are obtained withA5170 ms.
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vs 0.33 cm and 0.578 cm for the normal and slow mode!.
The stability of the above solutions remains to be est

lished. As an indication, the (s) in panel~c! of Figs. 6 and
7 shows the value ofr in where Din is equal toDst . It is
higher for the slow model. SinceK at r crit is below
5.4 cm21, this agrees with the prediction made in Sec. III

Finally, Fig. 8 shows the form of the solutions withr in
5rcrit ~bottom row! and 0.6 cm, which is closed tor min for
the slow model~top row!. r out was taken 1 cm larger tha
r in , beyond the range where its variation may influence
solution aroundr in . Solutions are shown for the normal~left
column! and slow~right column! model. The full curve is the
activation front, and the dashed curve, the repolariza
front. After rotation, the two fronts are superimposed, exc
nearr out where the high negative curvature imposed by
boundary condition induced a noticeable reduction of theA.
The dotted curve is the locus of the points withD
5Dmin(K). Region 1 encloses all the points where the act
potential is not finished; regions 2, the points that are stil
their refractory period. Region 3 corresponds to the excita
gap, in which a new action potential could propagate.
both r in , the slow model has a smaller region 1~smallerA!,
longer region 2@longerDmin(K)#, resulting in a larger excit-
able gap~EG! ~region 3!. Moving from the center to the
periphery,K andDmin decrease, such that the EG enlarg
SinceDmin is much more sensitive toK in the slow model, it
is responsible for the enlarged EG.

IV. DISCUSSION

Our first goal was to obtain general expressions for
rate and curvature dependence of APD andu that could be
used to study any transient or sustained regime of prop
tion in a 2D disk beyond the period-1 solution analyzed
this paper. We were thus looking for relations that were
propriate for a range of curvature and prematurity as larg

FIG. 8. Depolarization~full curve!, repolarization ~dashed
curve!, and Dmin ~dotted curve! fronts for the normal~a!,~c! and
slow model~b!,~d! for r in50.6 cm~top row! andr in5r crit ~bottom
row!. These curves separate the domain into three distinct regi
1, AP; 2, refractory period~RP!; and 3, excitable gap~EG!.
-
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possible. Previous works on the paced space-clamped M
model had shown that the APD dispersion curve was
main determinant of the entrainment response and tha
could be accurately represented by an invariant function
the DI.

The ability of the simple iterative modelDi 115T
2A(Di) to reproduce the bifurcation structure of the pac
MBR model has clearly established that the DI is more
propriate than the period of stimulation to describe the
namics@16#. Further works on reentry in a loop have als
proven thatA(D), complemented by a functionu(D) that
was also invariant, were sufficient to build a low
dimensional model reproducing the main features of the
entry regimes as a function of the radius of the loop@17#.
Accordingly, we chose the DI to express the prematurity, a
looked for functional representations of APD andu that, for
K50, would be similar to those used for the on
dimensional loop. Foru, these two constraints led us to
representation different from those of previous works
which APD was discarded and the period was used as
independent variable@23,24#. The formulation was usually
intended to be applied to regimes of low and moderate c
vature@31,32#. The APD restitution curve has to be include
in any realistic model of a cardiac excitable cell, since t
plateau of the action potential and its sensitivity to prema
rity make cardiac cells different from neurons and adapted
the pumping function of the heart.

In A(K,D), the rate and curvature dependence are se
rated@Eq. ~3.5!#. For u @Eq. ~3.4!#, K acts both as a scaling
factor @u`(K)# and as a translation@ f u(D2Dmin)(K)# in
the rate-dependent part.u`(K) is the well known linear ap-
proximation that remains surprisingly good, even forK near
Kcr . f u measures how much the prematurity exceeds
local refractory period that is given byDmin(K). As in-
tended, these expressions generalize those obtained in
space-clamped and loop configurations for ionic mod
where the slow memory effects on activation and repolari
tion are absent.

The functionsA andu were used to investigate the spati
properties of the period-1 solutions. For each@r inr out#, the
relation linking DI and APD to the speed of propagation a
to the period of rotation insures the uniqueness of the s
tions. It shows whyA(K,D) has to be included in the mode
Dmin(K) is the main determinant ofr min in both the normal
and slow models.Dmin limits the maximum curvature tha
can be reached in period-1 solutions in a range where
influence ofK on APD can be neglected. Furthermore, t
variation of the DI for each value ofr in andr out is minimal,
such that the activation and repolarization have the sa
curvature. This is consistent with the numerical results
@42# with the Luo-Rudy ionic model@43#. In their simula-
tions, the values of APD measured atr in are just slightly
above those found atr out . The variation ofDmin with K is
much more important in the slow model, explaining wh
r min is greater than for the normal model, despite a slow
speed of propagation at low DI.

Results for the space-clamped model and the o
dimensional loop show that period-1 responses lose their
bility when they reach the DI value for whichdA/dD51
@Eq. ~3.6!#. The results of Xieet al. @42# suggest that a simi-
lar criterion could be applied in an annulus. If Eq.~3.6! in-
deed provides an adequate criterion of stability, it involv
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the total derivative ofA and can be written as

dA

dD
5

]A

]D
1

]A

]K

dK

dD
. ~4.1!

Since the effect ofK on APD is minimal for period-1 solu-
tions (]A/]K'0), the criterion of stability for an annulu
and ring would be similar.

The period at the critical point,Tcrit5Dcrit1A(Dcrit), is
thus determined by the characteristics of the restitut
curve, andr crit5u(K,Dcrit)Tcrit /2p. If Dcrit is in the flat
portion of f u , as it is the case in the normal mode,r crit
depends only on the curvature and onTcrit . For the slow
model, the shift ofDmin(K) is so important thatf u is not
saturated atDcrit and f u must still be considered in the ca
culation of r crit . In general,r crit depends on the balanc
between, on the one hand, the value ofDcrit , and on the
other hand, the slowing of propagation coming from the
fluence ofK on u`(K) andDmin(K). In our simulations,r crit
is slightly greater for the slow model than in the norm
model. There is some indication that slowing the gate v
able j may stabilize the spiral waves in a continuous 2
medium@44#, which is not consistent with what we found fo
a disk. This may come from differences in theA(K,D),
Dmin(K) and u(K,D) functions of the ionic model with
which these simulations were done. It may also indicate
the core of the spiral makes a specific contribution that m
be included in the low-dimensional model so that it can
applied to a medium without an obstacle@26#.

The functionsDmin(K), u(K,D), andA(K,D) were ob-
tained through an approximation, assuming propagation w
.F
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a constant curvature. The simulations of the simplified mo
show that, even atr 5r min , the variation of curvature take
place in two thin regions in the vicinity ofr in and r out , K
remaining nearly constant everywhere else. This sugg
that the functions may indeed provide a good approximat
of the dynamics. It also gives some indications of the spa
discretization needed to simulate the ionic model on the
nulus. Since theK variation is confined nearr in andr out , it
suggests using a denser mesh in these regions to avo
numerical artifact. Results presented by Xieet al. @42# show
a dependence of the solution onr out , even for a width
greater than 1 cm beyondr in . However, they used a mes
with fixed angular width and fixed increment of radiu
which gives a coarser spatial resolution asr increases. This
may explain the discrepancy between our conclusion
theirs on the influence ofr out .

V. CONCLUSION

Varying the obstacle radius changes the period-1 solut
In this regime,K remains low such that the dependence oK
on APD can be neglected. The spatial variation of DI a
being limited, the same curvature can be assumed for ac
tion and repolarization fronts. However,A(D), Dmin(K),
andu(K,D) are necessary for an adequate reconstruction
the solution.
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